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Abstract

The variation of the velocity-derivative skewness of a Navier-Stokes flow

as the Reynolds number goes toward zero is calculated numerically. The value

of the skewness, which has been somewhat controversial, is shown to become

small at low Reynolds numbers.



We write the skewness S of the velocity derivative 8Ul/SX 1 as

S = ( 8u1/SXl)3
(1)

where u I is the velocity component in the Xl-direction and the overbars

indicate averaged values. If the skm_rness (or the skewness factor) is a

measure of the nonlinearity of the flow, one might expect it to approach zero

as the Reynolds number becomes small, since the Navier-Stokes equations should

be linear at low enough Reynolds numbers. Batchelor and Townsend [1] have, in

fact, given a relation between the nonlinear term in the vorticity equation

and the skewness.

Nevertheless, some plausible analyses have indicated that the skewness

factor may not approach zero at vanishingly small Reynolds numbers. In

particular, Refs. [2] and [3], where the shape of the energy spectrum was

assumed to remain similar with increasing time, concluded that the skewness

factor approaches a nonzero value in the final period of decay. That value

did not differ greatly from those at earlier times. On the other hand an

analysis where the assumption of similarity was not invoked [4 and 5], and an

experiment [5], indicated that the velocity-derivative skewness approaches

zero in the final period.

Here we use a numerical solution for a decaying Navier-Stokes flow to

determine how the skewness changes with time.

an incompressible flow can be written as

The Navier-Stokes equations for

aui 8(UiUk) 1 _ O2ui

8t = 8x k 9 8x i ÷ _ 8XkOX k' (2)



where the pressure is given by the Poisson equation

8 2
1 82E__ _ _ (UgUk)

p 8x_Sx_ - 8x_Sx k

The subscripts can have the values 1, 2, or 3, and a repeated subscript in a

term indicates a summation, with the subscript successively taking on the

values 1, 2, and 3. The quantity ui is an instantaneous velocity component,

x i is a space coordinate, t

kinematic viscosity, and p

initial velocity is given by

where

is the time, p is the density, _ is the

is the instantaneous pressure. As in [6] the

u i = a i cos q-x + b i cos r-x + c i cos s-x,

ai = k(2,1,1),

qi " (-1,1,1)/x0'

b i = k(1,2,1},

r i = (1,-1,1)/x O,

k is a quantity that fixes the initial Reynolds number at

(3)

(4)

one over the magnitude of an initial wavenumber component. The initial

pressure is not specified since it is calculated from Eq. (3). Equations (4)

and (5) satisfy continuity, and Eqs. (2) and (3) insure that continuity is

maintained. The boundary conditions are periodic, with a period of 2_x O.

It has been shown in [7] that 1283 grid points appear to resolve our

flow, even for times when the Reynolds number is relatively high (initial

Reynolds number - 1,000). Since we are mainly concerned here with the final

period of decay, where the Reynolds number is low, the results of most interest

should be very well resolved spatially. As in [6], numerical stability

limitations force the timewise resolution to also be good.

Figure 1 shows the calculated time evolution of the velocity-derivative

skewness. At the earlier times the skewness oscillates, having an average

c i : k(1,1,2),

si = (1,1,-1)/xo, (5)

t = O, and x 0 is



value somewhere around 0.5. That type of behavior was also obtained for the

numerical calculations in [8]. For later times S goes monotonically toward

zero as the fluctuations decay.

The calculated variation of the skewness with the microscale Reynolds

__1/2

number Rk = u 2 k/_ is plotted logarithmically in Fig. 2, where

2
u = uiui/3 and k is the Taylor microscale. Except at the larger Reynolds

numbers, the skewness goes toward zero monotonically as Rk decreases. The

limiting rate of approach to zero for the numerical solution is about the same

as that for the experiment in [5] (S = Rk 1.4).

The nonsimilar analyses in [4] and [5] give skewness factors that

approach zero as the Reynolds number decreases, as do the skewness factors in

our numerical solution and the experiment in [5]. This is in contrast to

similarity solutions [2 and 3]. The results suggest that the use of similarity

assumptions for calculating skewness factors in the approach to the final

period of decay may not always give realistic trends; the change in shape of

the energy spectrum with time seems to have an important effect.

As a final observation we note that at early times the fluctuations in

our flow are time-dependent and display sensitive dependence on initial

conditions [7]. The flow at early times therefore contains important

ingredients of turbulence [9]. That is evidently not the case at later times

in the approach to the final period of decay. In [10] it is shown that, at

least for forced flow, the fluctuations become time-independent at Reynolds

numbers ~5 and below. The fluctuations are then completely spatial.

Time-independent fluctuations also occur for our present flow in the approach

to the final period of decay, where the Reynolds numbers are on the order of



one and less (see, for example, Fig. 3). Thus the flow in the approach to the

final period cannot be considered truly turbulent. Batchelor and Townsend

[11] recognized early the nonturbulent character of the flow in the final

period of decay. Our results indicate that the flow in the approach to the

final period is also not turbulent in a strict sense, since the fluctuations

are time-independent, being only spatial. The presence of spatial

fluctuations in the absence of temporal fluctuations is shown by the fact

that u 1 is different at the two points considered in Fig. 3, even when

temporal fluctuations are absent.
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Figure 1.--Calculated time-evolution of
velocity-derivative skewness for a de-
ceying flow. Overbars designate space
averages.
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Figure 2.--Variation of velocity-derivative skew-
ness with microscale Reynolds number.
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Figure 3.---Calculated time-evolution of un-
averaged velocity components for a decay-
ing flow. Ordinates normalized by initial
condition.
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